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Summary

Analysis of the SIM focus mechanism (small motion version) has

shown the following:

i. The focus motion vs. focus ring rotation relationship is fairly

linear and can be easily calibrated.

2. The flexure stresses are high and will be higher yet in the

large motion version. These should be carefully examined in the

design process.

3. The SIM alignment (tilt) is insensitive to normal manufacturing

and assembly tolerances.

4. The tilt resulting from a c.g. shift due to changing

instruments in the focal plane is < 1 arcmin and should present no

problem.



i. Introduction

The design requirements and initial design concept for the AXAF-I

Science Instrument Module(SIM) were reviewed at Ball on September

29, 1993. The concept design SIM focus mechanism, shown in Figures

1,2 and 3, utilizes a planetary gearset, with redundant motors, to

drive a large ring(called "Main Housing Bearing") via a spur

gearset. This large drive ring actuates three tangent bar

links(called "Push Rods"), which in turn actuate three

levers(called "Pin Levers"). Each of the three Pin Levers rotates

an "Eccentric Pin", which in turn moves the base of a bipod flexure

in both the radial(normal to optical axis and axial (focus along

optical axis) directions. Three bipod flexures are employed,

equally spaced at 120 degrees apart, the base of each being

translated in the two directions as described above. A focus

adjustment is made by rotating the drive ring, which drives the

push rods and therefore the pin levers, which in turn rotate the

eccentric pins, finally imparting the two motions to the base of

each of the bipod flexures. The axial translation (focus

adjustment) of the focussed structure is the sum of the direct

axial motion plus axial motion which comes from uniformly squeezing

the three bipod bases radially inward. SAO documented the

following concerns regarding the focus mechanism in memo

WAP-FY94-001, dated October 7, 1993:

i) The focus adjustment depends, in large part, on the

structural properties (stiffnesses and end fixities) of the bipod

flexures, push rods, pin levers and eccentric pins. If these

properties are not matched very well, then lateral translations as

well as unwanted rotations'of the focussed structure will accompany

focus motion. In addition, the stackup of linkage tolerances and

any non-uniform wear in the linkages will result in the same

unwanted motions. Thermal gradients will also affect these motions.

At the review Ball did not present supporting analyses to support

their choice of this design concept.

2) The proposed "primary" method of measuring focus is by

counting motor steps. The "backup" method is by a pot mounted on

the drive ring. Neither method provides for a direct measurement

of the quantity desired(focus position). This is of concern

because of the long and indirect relationship between focus and the

sensed quantity(drive ring rotation). There are three sinusoidal

relationships and structural stiffness in the path, and the

resulting calibration is likely to be highly nonlinear. These
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methods would require an accurate ground calibration

3) Ground calibration(and verification) of focus vs.drive

position must be done in IG on the ground. This calibration will

be complicated by both the structural characteristics of the bipods

and the fact that the CG of the translating portion of the SIM is

not on the optical axis(thereby causing unwanted rotations and

changing the focus position vs. motor step and pot readout

relationships). The SIM translating weight could be offloaded, but

the calibration then becomes sensitive to any errors in

offloading(both magnitude and direction). There are concerns as

to whether a calibration to the required accuracy(better than

0.0005") can be accomplished on the ground.

4) The choice of a potentiometer as the focus position sensor

is questionable in terms of reliability for a five year mission

life. In addition, Rob Cameron's recent negative experience with

this same sensor on the GRO OSSE experiment raises our level of

concern.

The results of SAO's study of items i, 2 and 3 described above are

presented in this report.

2. Methodology

Evaluation of the focus mechanism was performed as follows:

i. An Ideas solid model of the mechanism was created

to visualize the geometry of the mechanism and its

motion.

2. A semi-analytiCal relationship between focus motion

and drive ring rotation was developed. This was

used to address concerns over the indirect drive

and its functional form.

3. A single flexure Ideas finite element model was

created to evaluate flexure axial motion vs.

radial inward "squeeze" of the flexure base.

4. A three flexure Ideas finite element model was

developed and'run to evaluate the performance

of the overall focus drive mechanism with

respect to structural non-uniformities and

calibration in IG.



3. Results

Solid Model

As a first step an Ideas solid model of the AXAF SIM focus

mechanism was made from information supplied by Ball in the SIM

Concept Audit, 9/29/93. Dimensions which were not explicitly given

were scaled or estimated from the pictures. The pin lever was

angled to prevent it from bumping into the flexure in the -40

degree position, otherwise the mechanism is as close to Ball's as

could be determined. (See fig. i). The range of motion was taken

to be -40 degrees to +40 degrees rotation of the pin lever and

eccentric pin, with the neutral position being the pin lever

parallel to the line of focus and the top of the flexure -45

degrees from the parallel to the line of focus through the

eccentric pin. An animated sequence which shows the working of the

mechanism was also developed. The extreme and neutral positions

are shown in figures 2 and 3.

Deformation of Flexure

Deformation of the flexure yields a significant component of the

focus motion. The eccentric pin in placed so that the flexure is

preloaded and increasingly loaded over the full range of motion.

To first order the motion of the flexure is that of a rigid body

with the same geometry, i.e. since the flexure is at a 45 degree

angle a motion of one inch in the radial direction at the pin end

will produce a motion of one inch in the axial direction at the

foot end. The motion is not a function of flexure EI.

Inspection of the mechanism has shown that the radial motion of

the flexure at the pin is _.136" The resulting deformation of the

flexure was verified by finite element analysis. A FEM of the

flexure was generated from an Ideas solid model (see fig. 4). The

eccentric pin is modeled as a node at the pin center with rigid

beams to the pin surface, which in turn are connected to the

flexure with circumferentially soft and radially hard springs. The

bottom of the flexure foot is free to slide in the focus direction

and is otherwise fixed. A .136" radial motion is input, the

expected .136" axial motion results (see fig. 5). It should be

noted that the analysis performed was a standard linear small

deflection analysis. These motions could properly be classified

as large deflections. Since focus will not be directly measured

and will be predicted in part by this structural analysis, a

nonlinear large deflection analysis should be performed as part of

the design process.
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Of interest is the stress generated by the input load. The maximum

stress in the flexure is about 24000 psi (see fig. 6). Since the

requirement for the range of motion has increased by a factor of

three over that used in this study, stress could become a design

driver and should be carefully considered.

Motion due to flexure deformation is combined with flexure rigid

body motion to determine overall focus motion.

Calculation of focus motion

Dimensions of the focus mechanism were scaled or estimatedlfrom the

information supplied by Ball in the SIM Concept Audit, 9/29/93.

It was assumed that the flexure would be prestressed so that at no

point within the full range of focus motion would the flexure pass

through an unstressed condition. (This is very important so as to

eliminate potential backlash.)

A solid model of the mechanism was made to visually demonstrate the

way the mechanism worked but it was necessary to calculate the

motions in order to get an accurate graph of focus motion versus

rotation of the focus ring. Focus is related to rotation of the

focus ring by a fourth order equation. I found an approximate

solution (accurate to .001 degree) by relating both focus and

rotation of the focus ring to rotation of the eccentric pin at one

degree intervals of focus ring rotation. (See figures 7 - i0 for

details.) The relationship between focus motion and ring rotation

is nearly linear and should present no significant problem of the

type envisioned.

Sensitivity Analyses

A series of analyses were performed to determine the sensitivity

of focus location and tilt due to mislocation of the flexures

during manufacture, extremes of manufacturing tolerance, or to

shifts in the center of gravity of the SIM. A finite element model

comprising all three flexures connected by rigid arms to a central

node was made (fig. ii).

Modifications to this model were made by moving one of the flexures

a certain amount, then an analysis was made by applying the -.136"

radial displacement to all three flexures. The resulting motion

of the center of the focal plane was predicted.
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Flexure motion Focal plane tilt

.01" +x

.i degree rotz

.01" -z

<.i arcsec

.6 arcsec

<.i arcsec

Tilts of the focal plane on order of i0 arcsec are of concern.

Combinations of flexure motion would yield larger tilts than those

listed here but still not of i0 arcsec order. The results indicate

that placement of the flexures to careful manufacturing tolerances

will be satisfactory.

An analysis was made to determine the effect of a change in

thickness of .01" of one of the flexures.

Condition Focal plane tilt

One flexure 0.01"

thinner

<.I arcsec

An analysis was made of the effect on gravity sag of shifting the

SIM c.g. by .5" during alignment in the vertical configuration

(gravity acting along the mirror axis). Weight of the SIM is

assumed to be 888 ibs, c.g. at 2" -y, 4.5" -z (Ball coordinate

system).

Condition Focal plane tilt

Nominal

c.g. moved

4.4 arcsec

4.9 arcsec

Again there is no significant effect provided the c.g. is known to

within a fraction of an inch. The nominal case was calculated for

the c.g. at one extreme of an approximately ii inch travel. The

overall tilt will be less than 1 arcmin for any configuration.

Model Accuracy

Several different flexure finite element models were made in order

to determine the appropriate mesh density for this analysis. The

initial model was a half flexure model of parabolic tetrahedra with

about 7200 nodes. Another model was made using the same number of

elements but linear instead of parabolic. This model had 1200



nodes. A third model was made of parabolic tetrahedra with two
elements through the thickness of the flexure blade. This one had
about 25000 nodes. All three models predict deflections within .2%
of each other. The coarsest model was inappropriate for stress.

Stresses between the middle and dense models varied by about 4%.

The initial model (middle density) was deemed to be adequate for

our stress calculation. The least dense model was used as a basis

for the three flexure model where no stress calculations were

performed.

4. Conclusions

Analysis of the SIM focus mechanism (small motion version) has

shown the following:

i. The focus motion vs. focus ring rotation relationship is fairly

linear and can be easily calibrated.

2. The flexure stresses are high and will be higher yet in the

large motion version. These should be carefully examined in the

design process.

3. The SIM alignment (tilt) is insensitive to normal manufacturing

and assembly tolerances.

4. The tilt resulting from a c.g. shift due to changing

instruments in the focal plane is < 1 arcmin and should present no

problem.
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